Posted onCategoriesБез рубрики


Pages: 16-49

UDC 69.001.5

Nanocomposite organomineral hybrid materials. Part 3

Author: KUDRYAVTSEV Pavel Gennadievich, D.Sc., Professor of HIT (Israel), Academician of

International Academy of Sciences for Ecology and Human Safety and Russian Academy of Natural Sciences, author of more than 180 publications including «Nanomaterials based on soluble silicates» and «Sol-gel technology of porous composites» (co-authorship with O.L. Figovsky), has 33 inventions; 52 Golomb Street, POB 305 Holon 5810201, Israel, 23100, e-mail:;

Author: FIGOVSKY Oleg Lvovich, Full Member of European Academy of Sciences, Foreign Member of REA and RAASN, Editor-in-Chief of Journals SITA (Israel), OCJ and ICMS (USA), Director R&D of INRC Polymate (Israel) and Nanotech Industries, Inc. (USA); Chairman of the UNESCO chair «Green Chemistry»; President of Israel Association of Inventors; Laureate of the Golden Angel Prize, Polymate INRC; Companion of the Order «Engineering Glory»; P.O.Box 73, Migdal Ha’Emeq, Israel, 10550, e-mail:

Extended Abstract: The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

Key words: Nanocomposites, sol-gel synthesis, soluble silicates, metal alkoxide, sols, gels, aerogels, packing of spherical nanoparticles, packing of fibrous nanoparticles.



  1. Kerber M.L. Polymer composite materials. Structure. Properties. Technology. St.-Petersburg, Profession, (2008), 560 p.
  2. Friedrich K., Fakirov S., Zhang Z. Polymer composites: from nano-to-macro-scale, (2005), Springer.
  3. Kobayashi N. Introduction to nanotechnology. Moscow, BINOM, (2005), 134 p.
  4. Chujo Y., Saegusa T. Advances in Polymer Science, (1992), Vol. 100, pp. 11–29.
  5. Kickelbick, G. Introduction to Hybrid Materials, in Hybrid Materials: Synthesis, Characterization, and Applications (ed G. Kickelbick), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, (2007). DOI: 10.1002/9783527610495.ch1.
  6. Pomogailo A.D. Hybrid polymer-inorganic nanocomposites. Russian Chemical Reviews, (2000), Vol. 69. № 1. p. 53–80.
  7. Pomogailo A.D., Rosenberg A.S., Uflyand I.E. Metal nanoparticles in the polymer, Moscow, Chemistry, (2000).
  8. Guglielmi M., Kickelbick G., Martucci A. (Eds.), Sol-Gel Nanocomposites, Series: Advances in Sol-Gel Derived Materials and Technologies, (2014), IX, 227 p.
  9. Hench L.L., West J.K. The sol-gel process, Chem. Rev., (1990), 90, 1, pp. 33–72, DOI: 10.1021/cr00099a003.
  10. Sergeev G.B. Nanochemistry, Moscow, Publisher MSU, (2003).
  11. Blesa M.A., Candal R.J. Powder production from aqueous solutions for ceramics application. Miguel A. Blesa et al., Key Engineering Materials, (1991), 58, 107–
  12. DOI:10.4028/
  13. Hirano S. Hydrothermal processing of ceramics. Am. Ceram. Soc. Bull., (1987), 66, 9, pp.1342–1344
  14. Somiya S., Roy R. Hydrothermal synthesis of fine oxide powders. Bull. Mater. Sci., (2000), 23, 6, p.453–460. DOI:10.1007/BF02903883.
  15. Lakeman C.D.E., Payne D.A. Sol-gel processing of electrical and magnetic ceramics. Mater Chem Phys, (1994), 38, 4, p. 305–324. DOI:10.1016/0254-0584(94)90207-0.
  16. Livage J., Beteille F., Roux C., Chatry M., Davidson P. Sol-gel synthesis of oxide materials. Acta. Mater., (1998), 46, 3, pp.743–750. DOI:10.1016/S1359-6454(97)00255-3.
  17. Komarneni S., Abothu I.R., Rao A.V.P. Sol-gel processing of some electroceramic powders. J Sol-Gel Sci. Technol., (1999), 15, 3, pp. 263–270.
  18. Lee G.R., Crayston J.A. Sol-gel processing of transition-metal alkoxides for electronics. Adv. Mater. (Weinheim, Fed Repub Ger), (1993), 5, 6, (1993), 434–442. DOI:10.1002/adma.19930050604.
  19. Sakka S. Sol-gel coating films for optical and electronic application. Struct Bonding (Berlin) 85(Optical and electronic phenomena in sol-gel glasses and modern application), (1996), 1–49.
  20. Levy D., Esquivias L. Sol-gel processing of optical and electro optical materials. Adv Mater (Weinheim, Ger), (1995), 7, 2, pp.120–129. DOI:10.1002/adma.19950070204.
  21. Brinker C.J., Scherer G.W. Sol-gel science: the physics and chemistry of sol-gel processing.

Access online via Elsevier, (1990).

  1. Dimitriev Y. Ivanova Y. Iordanova R. History of sol-gel science and technology (review). J. Univ. Chem. Technol. Metall., (2008), 43, pp.181–192.
  2. Livage J., Henry M., Sanchez C. Sol-gel chemistry of transition metal oxides. Prog. Solid State., (1988), 18, 4, pp. 259–341. DOI:10.1016/0079-6786(88)90005-2.
  3. Nemeth S. Processing and mechanical properties of hybrid sol-gel-derived nanocomposite

coatings. CRC Press, Boca Raton, (2010), pp. 147–204.

  1. Glaubitt W., Loebmann P. Antireflective coatings prepared by sol-gel processing: principles and applications. J Eur Ceram Soc., (2012), 32, 11, p. 2995–2999.


  1. Cushing B..L, Kolesnichenko V.L, O’Connor C.J. Recent advances in the liquidphase syntheses of inorganic nanoparticles. Chem. Rev. (Washington, DC, U S), (2004), 104, 9, pp. 3893–3946. DOI:10.1021/cr030027b.
  2. Niederberger M. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res., (2007), 40(9):793–800. DOI:10.1021/ar600035e.
  3. Sanchez C., Rozes L., Ribot F., Laberty-Robert C., Grosso D., Sassoye C., Boissiere C., Nicole L. «Chimie douce»: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C.R.Chim., (2010), 13, 1–2, pp. 3–39. DOI:10.1016/j.crci.2009.06.001.
  4. Kickelbick G. (Editor). Hybrid Materials: Synthesis, Characterization, and Applications, (2007), Wiley, 516 p.

Full text in PDF format (16-49)