Nanobuild-1-2014-pages-14-26

Posted onCategoriesБез рубрики

Pages:   14 – 26

Photocatalytic Cementitious Composites containing Mesoporous Titanium Dioxide Nanoparticles

 

Authors: FALIKMAN Vyacheslav Ruvimovich, Full member of REA,  Gazetny per. 9, bld. 4, Moscow, Russia, 125009, vfalikman@yandex.ru

Vainer Alexander Yakovlevich, Doct. of Eng., Consultant, Scientific Research Center «Construction», Gazetny per. 9, bld. 4, Moscow, Russia, 125009

 

Extended Abstract:  The advanced method to produce nanoparticles of anatase mesoporous TiO₂ with high specific surface 300 m²/g has been developed. It was shown that titanium nanodioxide can be used in cement and gypsum composites as a highly efficient photocatalyst in the conversion processes of nitric oxide and volatile organic substances. Influence of radiation intensity, relative humidity, and concentration of contaminant and its stream speed on photocatalysis was studied. It was determined that efficiency of the composites with synthesized samples is 1,5–1,7 times higher than that of the commercial sample of the titanium nanodioxide.

 

Key words: titanium dioxide, photocatalytic properties, cementitiuos building materials, pollutants.

 

References:

1. Falikman V.R., Vainer А.Y. Photocatalytic active building materials with titanium dioxide

nanoparticles – a new concept to improve the ecology of megalopolises’. Proceedings of round table «The problems of application of nanotechnologies in construction». Moscow, MGSU, 2009. 120 p., pp. 35–49.

2. Chen J., Poon C.-S. Environ. Sci. Technol. 2009. V. 43, № 23, pp. 8948–8952.

3. Bartos Peter J.M. Environmentally Active GRC: Towards Better Appearance of Concrete and a Reduction of Air-Pollution in Urban Environment. Nanotechnologies in Construction: A Scientific Internet-Journal. Moscow. CNT «NanoStroitelstvo». 2011. V. 3, № 2, pp. 24–40.

4. Cassar L., Beeldens A., Pimpinelli N., Guerrini G.L. Photocatalysis of cementitious materials.

International RILEM Symposium on Photocatalysis, Environment and Construction Materials.

2007, pp. 131–145.

5. Hüsken G., Hunger M.. Brouwers H.J.H. Build. Environ., 2009. V. 44, № 12, pp. 2463–2474.

6. Chen X., Mao S.S. Chem. Rev. 2007. V. 107, № 7, pp. 2891–2959.

7. Peng J., Zhao D., Dai K., et al. J. Phys. Chem. B. 2005. V. 109, № 11, pp. 4947–4952.

8. Ichinose H., Terasaki M., Katzuki H. J. Ceram. Soc. Jpn. 1996. V. 104, № 8, pp. 715–718.

9. Cassiers K., Linssen T., Mathien M., et al. J. Phys. Chem. B. 2004. V. 108, № 12, pp. 3713–3721.

10. Zhang Q., Gao L., Guo J. Appl. Catal. B., 2000. V. 26, № 1, pp. 207–215.

11. Barret E.P., Joyner L.G., Hallenda P.H. J. Am. Chem. Soc. 1951. V.73, № 1, pp. 373–380.

12. Rouquerol F., Rouquerol J., Sing K. Adsorption by Powders and Porous Solid: Principles, Methodology, and Applications. San Diego: Academic Press., 1999.

13. Beyers E., Cool P., Vansant E.F. J. Phys. Chem. B. 2005. V. 109, № 20, pp. 10081–10086.

14. ISO 22197-1:2007 Fine ceramics (advanced ceramics, advanced technical ceramics) – Test method for air-purification performance of semiconducting photocatalytic materials – Part 1: Removal of nitric oxide.

15. Nazari A., Riachi S. Mater. Sci. And Eng. A. 2011. V. 528, № 4–5, pp. 2085–2092.

16. Liu Z.-H., Tang X., Zhang C., Zhou G. Chem. Lett. 2005. V. 34, № 10, pp. 1312–1313.

 

Full text in PDF format (14-26)