nanobuild-3-2015-pages-43-59

Posted onCategoriesБез рубрики

THE RESULTS OF THE SPECIALISTS’ AND SCIENTISTS’ RESEARCHES

Pages:   43-59

UDC 666.974; 661.666.4

The carbonaceous concrete based on sawdust

Authors: BELOUSOVA Elena Sergeevna, Post-graduate student of the Department of «Information Security» Belarussian State University of Informatics and Radioelectronics, Minsk, Belarus; L.Bedy, 2b, hostel № 3, room 135b, Minsk, Belarus, 220040, elena1belousova@gmail.com;

LYNKOV Leonid Mihailovich, Doctor of Engineering, Professor, Head of the Department «Information Security» Belarussian State University of Informatics and Radioelectronics, Minsk,

Belarus; Independence Avenue, 157–197, Minsk, Belarus, 220114, leonid@bsuir.by;

Abdolsalam Meftah MOHAMED Abulgasim, Post-graduate student of the Department of «Information Security» Belarussian State University of Informatics and Radioelectronics, Minsk, Belarus; Parnikovaja st., 11–77, Minsk, Belarus, 220114, a.slam78@yahoo.com

Extended Abstract: Today there are many requirements for strength, ecology and economy of

produced concretes. The authors of the paper study attenuation of electromagnetic radiation of carbonaceous powders in the concrete composition. Carbon black was selected as a carbon powder for addition in concrete composition. Carbon black is a nanomaterial with disoriented structure of particles (average size is about 50 nm). The composition of the carbon black contains at least 90 wt.% amorphous carbon, more than 5 wt. % chemisorbed oxygen and about 4 wt.% of impurities. Materials with the addition of carbon black have electrical conductivity due to the high content of carbon. These materials are able to absorb electromagnetic radiation. For cement composition with addition of carbon black (more than 30 wt. %) and water transmission coefficient of electromagnetic radiation is about –10 dB, for cement composition with 20 wt. % of carbon black the reflection coefficient is –8 dB in the frequency range 8–12 GHz. The concretes with a saturated aqueous solution of calcium chloride and 10% of carbon black possess minimal reflection coefficient (–14… –8 dB). Electromagnetic radiation shielding of concrete with the addition of sawdust was investigated. The concrete with sawdust (40 wt. %) impregnated with an aqueous solution with carbon black has the reflection coefficient less than –8 dB and transmission coefficient –40 dB in the frequency range 8–12 GHz. These concretes can be used for creation of a shielded room with the technical equipment for information processing to prevent data leakage through the compromising emanations and crosstalk.

Key words: calcium chloride solution, carbon black, concrete, electromagnetic radiation transmission coefficient, reflection coefficient of electromagnetic radiation, sawdust.

DOI: dx.doi.org/10.15828/2075-8545-2015-7-3-43-59

References:

  1. Golubkov V.V., Nguen Hyu Van, Potapova E.N., Rakov Je.G. The application of carbon nanomaterials for the concrete modification. Materialy VIII Mezhdunarodnoj konferencii «Uglerod: fundamental’nye problemy nauki, materialovedenie, tehnologija» [Proc. VIII Int. Conf. «Carbon: fundamental problems of science, materials science, technology»]. Troitsk, 2013, pp. 138.
  2. Chung D. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, Vol. 50, no. 9, pp. 3342–3353.
  3. Kuleshov G.E., Docenko O.A., Kochetkova O.A. Jelektromagnitnye harakteristiki zashhitnyh pokrytij na osnove poroshkov geksaferritov, uglerodnyh nanostruktur i mul’tiferroikov [The electromagnetic characteristics of protective coatings based on hexaferrite powders, carbon nanostructures and multiferroic]. Polzunovskij vestnik [Reports of Polzunov], 2012, no. 2, pp. 163–167. (In Russian).
  4. Raki L., Beaudoin J., Alizadch R. Cement and Concrete Nanoscience and Nanotechnology. Materials, 2010, V. 3, pp. 918–942. (In English).
  5. Nasibulina L.I., Mudimela P.R., Nasibulin A.G. Synthesis of carbon nanotubes and nanofibres on the particles of silica and cement. Voprosy materialovedenija [Problems of Materials Science], 2010, no. 1 (61), pp. 121–125. (In Russian).
  6. Nikolajchuk G.A., Ivanov V.P., Jakovlev S.V. Radiopogloshhajushhie materialy na osnove nanostruktur [Radio-absorbing materials based on nanostructures]. Jelektronika: nauka, tehnologija, biznes [Electronics: Science, Technology, Business], 2010, no. 1, pp. 92–95. (In Russian).
  7. Belousova E.S., Mahmud M.Sh., Lyn’kov L.M., Nasonova N.V. Radio shielding properties of concrete based on shungit nanomaterials. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2013, Vol. 5, no. 2, pp. 56–67. Available at: http://nanobuild.ru/en_EN/ (Accessed 12 April 2015). (In Russian).
  8. Mahmud, M.Sh., Nasonova N.V., Krishtopova E.A., Borbot’ko T.V., Prudnik A.M., Lyn’kov L.M. Shungitsoderzhashhie kompozicionnye jekrany jelektromagnitnogo izluchenija [Schungit containing electromagnetic radiation screens]. Minsk, Bestprint, 2013, 195 p. (In Russian).
  9. Perfilov V.A., Zubova M.O. Application soot waste (carbon black) in order to improve the strength characteristics of heavy weight concrete. Materialy XI Mezhdunarodnoj nauchnoj konferencii «Kachestvo vnutrennego vozduha i okruzhajushhej sredy» [Proc. XI Int. Conf. «Indoor air quality and the environment»]. Volgograd, 2013, pp. 118–123.
  10. Fahratov M.A. Effective technology for utilization of industrial waste in the production of concrete and reinforced concrete. Stroitel’nye materialy [Construction Materials], 2003. no. 12, pp. 48–49. (In Russian).
  11. Mahmud M.Sh., Belousova E.S., Prudnik A.M., Lyn’kov L.M. Vlijanie dobavok bishofita na harakteristiki piramidoobraznyh jekranov jelektromagnitno izluchenija dlja sredstv zashhity informacii i jekologicheskoj bezopasnosti [Influence of bischofite additives on the characteristics of pyramid-shaped screens of electromagnetic radiation for information protection and ecology safety]. Proc. of BSUIR, 2014, no. 1 (79), pp. 89–92. (In Russian).
  12. Mahmud M.Sh., Pulko T.A., Prudnik A.M., Lyn’kov L.M. Carbonaceous finishing materials to protect the premises of special purpose. Bezopasnost’ informacionnyh tehnologij [Security of information technology], 2012, no. 1, pp. 192–194. (In Russian).
  13. Boiprav O.V., Mahmoud M.Sh., Neamah M.R. Vlijanie jekranov s geometricheski neodnorodnoj poverhnost’ju na oslablenie moshhnosti jelektromagnitnyh izluchenij [Influence of screens with geometrically non-uniform surface on capacity easing of electromagnetic radiations]. Reports of BSUIR, 2011, no 3, pp. 5–10. (In Russian).
  14. Surovikin V.F. Modern trends in the development of methods and technology of nano-dispersed carbon materials. Rossijskij himicheskij zhurnal [Russian Chemical Journal], 2007, Vol. LI, no. 4, pp. 92–97. (In Russian).
  15. Gjul’misarjan T.G., Levenberg I.P. Proizvodstvo tehnicheskogo ugleroda: sostojanie i tendencii [Production of carbon: state and trends]. Mir nefteproduktov [Oil World], 2008, no. 7, pp. 6–10. (In Russian).
  16. Fialkov A.S. Uglerod, mezhsloevye soedinenija i kompozity na ego osnove [Carbon, interlayer compounds and composites based on it]. Moscow, Aspect-Press, 1997, 718 p. (In Russian).
  17. Messerle V.E. Plasma pyrolysis of hydrocarbon gases. Vestnik KaShU [Bulletin of KaShU], no. 4 (35), 2010, pp. 45–50.
  18. State Standard 31008–2003. Cements for general construction. Moscow, FGUP CPP, 2004. 21 p. (In Russian).
  19. Portlandcement so shlakom CEM II/A-Sh 42.5 N(CEM II/A-S 42.5N) [Portland cement with slag CEM II / A-SH 42.5 N (CEM II / AS 42.5N)] (2009). Available at: http://www.kcsh.by/ru/production/9/ (accessed 7April 2015).
  20. State Standard 7885–86. Technical carbon for production of rubber. Technical conditions. Moscow, Standartinform Publ., 2002, 37 p. (In Russian).
  21. Uskoriteli shvatyvanija i tverdenija v tehnologii betonov [Accelerators and hardening in concrete technology] (2011). Available at: http://www.concrete-union.ru/

articles/additives_for_concrete.php?ELEMENT_ID=5185 (accessed 7 April 2015).

  1. Bogush V.A. Jelektromagnitnye izluchenija. Metody i sredstva zashhity [Electromagnetic

radiation. Methods and protective equipment]. Minsk, Bestprint, 2003, 406 p. (In Russian).

  1. Belousova E.S., Nasonova N.V., Lynkov L.M. Fire-resistant shielding coating based on shungite-containing paint. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2013, Vol. 5, no. 4, pp. 97–109. Available at: http://nanobuild.ru/en_EN/ (Accessed 7 April 2015). (In Russian).
  2. Panjuzhev E.M. Prochnost’ i deformativnost’ opilkobetona na gipse β-modifikacii pri kratkovremennom i dlitel’nom dejstvii nagruzok i ocenka nadjozhnosti konstrukcij na ego osnove [Durability and deformability of concrete with sawdust on the cast β-modification at short and long-acting loads and reliability assessment of structures based on it]. Nizhny Novgorod, 2004, 231 p. (In Russian).
  3. Davaasenge S.S., Burenina O.N., Petukhova E.S. Modifikacija opilkobetona dlja uluchshenija fiziko-mehanicheskih svojstv [Sawdust-concrete modification to improve the physical and mechanical properties] Scientific journal of KubGAU, no 101, 2014, pp. 1–10. (In Russian).
  4. State Standard 23246–78. Wood chopped. Terms and definitions. Moscow, Standartinform

Publ., 1978, 5 p. (In Russian).

Full text in PDF format (43-59)