Nanobuild-1-2015-pages-51-54

Posted onCategoriesБез рубрики

INTERNATIONAL EXPERIENCE

Pages:   29 – 54

UDC 69.001.5

Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 1. Statical polymer method

Authors: KUDRYAVTSEV Pavel Gennadievich, D.Sc., Professor of HIT (Israel), Academician of International Academy of Sciences for Ecology and Human Safety and Russian Academy of Natural Sciences, author of more than 150 publications including «Nanomaterials based on soluble silicates» (in cooperation with O.Figovsky) and 30 inventions; 52 Golomb Street, POB 305 Holon 5810201, Израиль, 23100, e-mail: pgkudr89@gmail.com;

FIGOVSKY Oleg Lvovich, Full Member of European Academy of Sciences, Foreign Member of REA and RAASN, Editor-in-Chief of Journals SITA (Israel), OCJ and ICMS (USA), Director R&D of INRC Polymate (Israel) and Nanotech Industries, Inc. (USA); Chairman of the UNESCO chair «Green Chemistry»; President of Israel Association of Inventors; Laureate of the Golden Angel Prize, Polymate INRC; P.O.Box 73, Migdal Ha’Emeq, Израиль, 10550, e-mail: figovsky@gmail.com

Extended Abstract:  The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

Key words: quasi-homogenous approximation, dispersed systems, statistic polymer method, formation of crosslinkings, fractal method, colloid solution, silica, sol-gel transition, free path length.

DOI: dx.doi.org/10.15828/2075-8545-2015-7-1-29-54

References:

  1. Kudryavtsev P., Figovsky O. Nanomaterials based on soluble silicates, ISBN 978-3-659-63556-4, LAP Lambert Academic Publishing, 2014, 241 p.
  2. Kudryavtsev P., Figovsky O. Nanomaterialy na osnove rastvorimyh silicatov [Nanomaterials based on soluble silicates]. ISBN 978-3-659-58361-2. LAP Lambert Academic Publishing. 2014. 155 p. (In Russian).
  3. Slettery J. Teorija perenosa impul’sa, jenergii i massy v sploshnyh sredah [The theory of transfer of impulse, energy and mass inrastvorimyh d environments]. Мoscow, 1978. (In Russian).
  4. Heifez L.I., Neimark A.V. Mnogofaznye processy v poristyh sredah [Multiphase processes in porous environments]. Moscow, 1982. (In Russian).
  5. Greiser, T., Jarchow, O., Klaska, K.-H. and Weiss, E. Dioxotetradecakis (trimethylsiloxo) octadecakupfer(I), Cu18O2[OSi(CH3)3]14, ein silikon-analoges Oligomeres mit Kupfer als Heteroatom im silikatischen Grundgerüst. Chem. Ber., (1978), 111: 3360–3366. doi: 10.1002/cber.19781111010.
  6. Levenshpil О. Inzhenernoe oformlenie himicheskih processov [Engineering design of chemical processes]. Мoscow, Khimia, 1969. (In Russian).
  7. Frank-Kamenezky D.A. Diffuzija i teploperedacha v himicheskoj kinetike [Diffusion and thermal transfer in chemical kinetics]. 3rd Edition. Moscow, 1987. (In Russian).
  8. Heifez L.I., Brun E.B. Teoreticheskie osnovy himicheskoj tehnologii [Theoretical principles of chemical technology]. 1987. V. 21, № 2, p. 191–214. (In Russian).
  9. Dorohov I.N., Kafarov V.V. Sistemnyj analiz processov himicheskoj tehnologii [System analysis of processes of chemical technology]. Мoscow, Nauka [Science], 1989. 376 p. (In Russian).
  10. Flory, P.J. Statistical Mechanics of Chain Molecules. Interscience, New York, (1969).
  11. Moshinsky, L. and Figovsky, O. Proc. Intern. Conf. «Corrosion in Natural and Industrial Environments: Problems and Solutions», (1995), 699 p.
  12. Romm F., Figovsky O. Statistical polymer method: Modeling of macromolecules and aggregates with branching and crosslinking, formed in random processes, Discrete Dynamics in Nature and Society Vol. 2 (1998), 3, P. 203–208 http://dx.doi.org/10.1155/S1026022698000181.
  13. Romm F., Figovsky O. Modeling of Mechanical Properties of Polymeric Systems with Branching/Crosslinking, Particularly Their Mechanical Resistence and Stability. Macromolecular Theory and Simulations Volume 11, Issue 1, pages 93–101, January 2002.
  14. Gontar, V. New theoretical approach for physicochemical reactions dynamics with chaotic behaviour. In Chaos in Chemistry and Biochemistry, World Scientific, London, 1993, pp. 225–247.
  15. March, J. (1985), «Advanced Organic Chemistry: Reactions, Mechanisms, and Structure» (3rd ed.), New York: Wiley, ISBN 0-471-85472-7. 16. Astruc D. The metathesis reactions: from a historical perspective to recent developments. New J. Chem. (2005). 29 (1): pp. 42–56. DOI:10.1039/b412198h.
  16. March G. Organicheskaja himija [Organic chemistry], transl. from Eng, v. 3, Moscow, Mir, 1988 (In Russian).
  17. Dreessen T., Jargstorff C., Lietzau L., Plath C., Stademann A., Wille U. Self-Terminating, Oxidative Radical Cyclizations Molecules 2004, 9, 480–497.
  18. Loskutov A. Nelinejnaja dinamika, teorija dinamicheskogo haosa i sinergetika (perspektivy i prilozhenija) [Non-linear dynamics, the theory of dynamic chaos and synergetrics (prospects and applications]. Computers. 1998. № 47. http://www.cplire.ru/koi/InformChaosLab/chaoscomputerra/Loskutov.html.
  19. Mikhailov A.S., Loskutov A.Yu. Chaos and Noise. Springer, Berlin, 1996.
  20. Ananieva E.S., Novikovskij E.A., Ananiev M.I., Markin V.B., Ishkov A.V. Primenenie fraktal’no-klasternogo podhoda dlja analiza struktury i prognozirovanija svojstv polimernyh nanokompozitov [Application of fractalcluster approach for analysis of the structure and forecast of the properties of polymer nanocomposites]. Polzunovsky Vestnik, 2012. V.1, №1. p.10–14. (In Russian).
  21. Novikov V.U., Kozlov G.V. Polifraktal’nost’ struktury napolnennyh polimerov. [Polyfractality of the structure of filled polymers. Application of fractal-cluster approach]. Plastical masses. 2004. № 4. p. 27–38. (In Russian).
  22. Mandelbrot B.B. Fractals: Form, Chance and Dimension, W.H. Freeman, New San Francisko, 1977.
  23. Mandelbrot B.B. The fractal Geometry of Nature, Freeman, San Francisco, 1982.
  24. Zhjulne R. Fraktal’nye agregaty [Fractal aggregates], Uspehi fizicheskih nauk [The success of physics]. 1989. V. 157, № 2. p. 339–357. (In Russian).
  25. Smirnov B.M. Svojstva fraktal’nogo agregata [Properties of fractal aggregate], Uspehi fizicheskih nauk [The success of physics]. 1989. V. 157, № 2. p. 357–360. (In Russian).
  26. Romm F., Karchevsky V., Figovsky O. Combined monte carlo/thermodynamic model of formation of microporous aggregate structure like silica from quaternary ammonium silicate solutions. Journal of Surfactants and Detergents(IF 1.515), 2000, Vol. 3 (4), pp.475-481. Springer. http://onlinelibrary. wiley.

com/doi/10.1002/1521-3919%2820020101%2911:1%3C93::AIDMATS93% 3E3.0.CO;2-F/abstract.

  1. Ponomarenko A.T., Figovsky O., Shevchenko V.G. Multifunctional Polymer Composites for «Intellectual» Structures: Present State, Problems, Future. Journal Advanced Materials Research, 2008, Vol.740 (47), pp. 81–84, Trans Tech.
  2. Kudryavtsev P.G., Figovsky O.L. Nanostructured materials, production and application in construction. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2014, Vol. 6, no. 6, pp. 27–45. DOI: dx.doi.org/10.15828/2075-8545-2014-6-6-27-45 (In Russian).
  3. Figovsky O.L., Beilin D.A, Ponomarev A.N. Successful implementation of nanotechnologies in building materials. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2012, Vol. 4, no. 3, pp. 6–21. http://www.nanobuild.ru/magazine/nb/Nanobuild_3_2012.pdf (date of access: 20.12.14) (In Russian).
  4. Urkhanova L.А., Lkhasaranov S.А., Rozina V.Ye., Buyantuev S.L., Bardakhanov S.P. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2014, Vol. 6, no. 4, рр. 15–29. http://nanobuild.ru/en_EN/(date of access: 20.12.14).(In Russian).

 

Full text in PDF format (51-54)