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ABSTRACT: Introduction. As part of the task to create new materials for additive technologies, an analysis of the situation was 
carried out, and a problem was identified with the lack of common approaches to selecting raw material components for mixtures. 
Theoretical concept. Based on the approaches of fundamental structure rheology, physicochemical mechanics of disperse systems, 
the theory of packing of granular media, we theoretically justified the criteria requirements for the characteristics of fillers and sug-
gested quantitative criteria for their evaluation. It was proposed to use these quantitative criteria for a preliminary comprehensive 
assessment of fillers when designing compositions of mixtures for 3D construction printing. Materials and methods. The charac-
teristics of the fillers were evaluated using scanning electron microscopy with a scanning electron microscope Thermo Scientific™ 
Phenom™ Desktop SEM and processing of images by the ParticleMetric software package as well as using laser granulometry with 
a laser analyser of particles Analysette 22. Results. We assessed the cement and 5 types of fillers that had different sizes and played 
different roles in the formation of the mixture properties. We also identified their estimated criterial characteristics, including the 
average particle diameter, gra-nulometric constant, and particle shape coefficient. Boundary values of these characteristics were 
determined for particles of different morphology and dispersion degree. Conclusion. Based on the application of the suggested 
theoretical approaches, we determined the lines of research associated with obtaining experimental patterns of the impact of the 
criterial characteristics of fillers on the rheological characteristics of mixtures as well as with these characteristics according to their 
significance and justifying the requirements for the range of quantities of fillers depending on their size, shape, and granulometry.
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STATE OF THE ISSUE

One of the principal issues related to the implemen-
tation of the potential of additive technologies in 

construction is the creation of efficient materials that are 
fundamentally different from traditional building materi-
als in their technological characteristics. As for traditional 
construction technologies, the set of such properties is 
determined by the need to quickly and easily fill the mold 
or the formwork. In 3D printing technology, it is neces-
sary to ensure the formation of a defect-free extruded 
layer and the body of a construction object in case of 

formwork-free shaping. Today, the set of technological 
characteristics of mixtures for printing includes the fol-
lowing elements [1]–[3]:

1) pumpability, that is the ability of mixture to be 
transported from the preparation site to the printing 
head.

2) extrudability, printability, that is the ability of mix-
ture to form a defect-free printing layer in the course of 
extrusion. 

3) shape retention, that is the ability of the extruded 
layer to preserve its cross section equal to the cross sec-
tion of the nozzle. 
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4) buildability, workability, that is the ability of the 
layer to preserve its shape under the pressure of the upper 
layers in a printed structure. 

As part of the optimisation of these characteristics, 
the rheological behaviour of mixtures for 3D printing 
has been thoroughly studied [4]. Based on this, dozens 
of various materials with the technological characteristics 
necessary for printing have been produced and success-
fully tested, which have. Compositions for 3D printing 
are multi-component, so they contain superplasticisers, 
viscosity modifiers, structure formation regulators, as 
well as fillers and aggregates of different chemical and 
mineralogical compositions and dispersion degree at the 
same time.

As it was shown in the reviews by A. Rehman [5], Bing 
Lu [6], and D. Jiao [7], the roles of the binding agents, 
plasticisers, and viscosity modifiers in the regulation of 
the rheological behavior and, accordingly, in the provi-
sion of the specified technological characteristics were 
definitely determined. It was confirmed that the type of 
binding agent is the main factor in the regulation of the 
processes of structure formation and hardening of 3D 
printed composites. The introduction of superplasticisers 
and electrolytes is the main factor regulating the plasticity 
of the mixture. Viscosity modifiers (inorganic polymers 
and inorganic nanodispersed additives) determine the 
shape retention indicators.

The characteristics and concentrations of fillers are 
considered to be priority factors in regulating the plastic-
ity and shape retention of mixtures. Systematisation and 
analysis of data on the influence of fillers on the tech-
nological properties of mixtures for 3D printing allowed 
discovering the following. Currently, natural and recycled 
aggregates are used to produce building mixtures, which 
can be divided into three size groups [8–24]:

– fine sand-like aggregates: carbonate and quartz 
sand, waste glass aggregate, plastic and rubber process-
ing products, etc.

– microscale power-like aggregates: fly ash, mining 
tailings, silica fume, ground blast furnace slag, thermo-
plastic microspheres, crushed limestone;

– nanoscale aggregates: metakaolin, kaolin, chalk, 
nanoclay.

The roles of fillers of different sizes significantly differ. 
Influence of fine sand-like aggregates [8–16]. The in-

creased concentration of fillers of this dimension leads 
to an increase in viscosity and a decrease in the plasticity 
of mixtures, which is naturally associated with increased 
friction between particles. As a result, the pumpability 
and extrudability of the mixtures deteriorate. Therefore, 
the following strict limits were applied:

– Mass ratio of binder/ fine sand-like aggregates must 
be ≤ 2.

– The size of filler grains must not exceed 2–2.5 mm.

Influence of microscale power-like aggregates [17–20]. 
The fillers of this dimension can be introduced as a re-
placement for part of the cement in the composition of the 
binding agent, and their concentration in the optimised 
mixture compositions is within the range of 20–40% of 
the mass of cement. The impact on various technologi-
cal characteristics depends to a large extent on the type 
of microscale power-like aggregates. The introduction of 
crushed limestone improves plasticity, although reduces 
the shape retention of mixtures. The introduction of ash, 
mining tailings, and ground blast furnace slag increase the 
yield strength and plastic viscosity of mixtures. To achieve 
their optimal values in 3D printing technology, a rational 
particle size distribution of these types of fillers must be 
ensured.

Influence of nanoscale aggregates [21–24]. They are 
used as modifying additives, and the concentration in 
optimised mixtures is within the range of 2–5% of the 
mass of cement. Nanoparticles are placed between cement 
grains, tightening the structure of the mixture. As a result, 
the values of the static yield strength and plastic viscosity 
increase while the dynamic viscosity and dynamic yield 
strength remain unchanged. This determines an increase 
in shape retention and workability of mixtures without 
any deterioration of their pumpability. At the same time, 
aluminosilicate fillers (such as metakaolin, nanoclay, etc.) 
have a crystal-chemical structure similar to cement, which 
allows accelerating the hydration process and increasing 
the strength of 3D printed composites.

Therefore, we can clearly identify that the dimension 
and concentration of fillers in mixture compositions have 
a determining influence on the set of necessary technolog-
ical characteristics. The granulometry of fillers is also of 
great importance. In [25] Y. Weng and others used Fuller 
Thompson theory and Marson-Percy model approaches 
to design mixture compositions. It was proved that the use 
of sand with continuous gradation in 3D printing mixtures 
improves their workability. In our previous studies [26, 
27] we also discovered that obtaining mixtures with the 
required plasticity and shape retention can be achieved 
by the use of polydisperse fillers of the entire size range, 
from nano to finely dispersed. The use of uniform grada-
tion fillers, on the contrary, results in a loss of plasticity 
and aggregate stability of mixtures.

PROBLEM STATEMENT

Despite a large amount of research and develop-
ment, today the empirical approach prevails in the de-
sign of mixtures for 3D printing. To a significant extent, 
this also applies to the choice of fillers and the regula-
tion of their concentration in mixture compositions. 
Usually, the articles do not provide any justification for 
the selection of certain fillers and do not analyse their 
role in the formation of the structure of viscoplastic 
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mixtures. As a result, the role and the mechanism of 
fillers’ impact on the set of rheological properties of 
3D printed mixtures have not been clearly determined. 
When designing compositions, quantities of fillers of 
a particular type are selected without the identifica-
tion of the general requirements to their characteristics 
necessary for a priori (before experiment) of the ap-
plicability of a certain filler in 3D printing technology 
and of the limits of its rational quantities.

In order to solve this issue, a general scientific concept 
must be formed and criterial requirements to the charac-
teristics of fillers must be justified, which is the purpose of 
this article. This will allow justifying general requirements 
to the selection of raw mixture components for 3D print-
ing in construction.

THEORETICAL JUSIFICATION OF CRITERIAL
 REQUIREMENTS TO FILLERS 
FOR DESIGNING COMPOSITIONS 
OF MIXTURES FOR 3D CONSTRUCTION
PRINTING

The justification of these requirements is based on the 
following approaches:

– fundamental structural rheology and physicochemi-
cal mechanics of dispersed systems, formed in the works 
of scientific schools of P. A. Rebinder, N. N. Kruglitsky, 
and N. B. Uryev [28–30].

– the theory of packing of granular media, developed 
regarding the problems of building materials science in the 
works of Belov V. V. and Korolev L.V. [31–32].

The structure of viscoplastic mixtures for 3D print-
ing is considered to be a highly concentrated “dispersed 
phase – dispersion medium” system, the strength and 
aggregate stability of which depend on the number and 
strength of coagulation contacts. Mixtures for 3D print-
ing belong to dispersion systems with near coagulation of 

particles sized ~ 5×10–5–10–4 m. In contrast to the design 
approaches of dry building mixtures which involves dense 
packing of particles, in mixtures for 3D printing it must 
be taken into account that the particles of the dispersed 
phase are making contact through the interlayers of the 
dispersion medium (Fig. 1).

To implement the technological process of 3D print-
ing, the mixture must preserve its strength and aggregate 
stability at all stages:

– during transportation, under dynamic conditions of 
viscoplastic flow affected by high shear stresses;

– in the process of extrusion, under dynamic condi-
tions of viscoplastic flow affected by low compressive and/
or shear stresses.

– at the stage of layer-by-layer printing, under static 
conditions affected by compressive stresses.

In accordance with the fundamental regulations of 
the structural rheology of dispersion systems (works of 
the schools of P.A. Rehbinder [28] and N.N. Kruglitsky 
[29]), the strength of the structure of a dispersion system 
depends on the particle size (in the region < ri) and the 
strength of individual contacts and their number per unit 
volume of the structure, depending on the concentration 
of the dispersed phase j in the dispersion medium:

,� (1)

where Pm is the strength of the structure, αi is the co-
efficient characterising the type of particle packing, Fс is 
the adhesion force in the contact, and n is the number of 
contacts between particles per unit volume.

The adhesion strength in contacts can be determined 
experimentally or calculated using the theory of intermo-
lecular interactions of condensed phases. In accordance 
with the theory of adhesion of condensed phases [30], 
the adhesion strength between spherical particles can be 
determined using the following formula:

Fig. 1. Structure Model of fthe 3D printable mixtures as a system “dispersed phase – dispersion medium”
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,� (2)

where r1 and r2 are the radii of contacting particles; σ13 
is the Gibbs energy of the interface unit between a solid 
body and a dispersed medium, i.e. surface tension; σ11 
is the Gibbs energy of a surface unit at the boundary of 
contacting solid bodies (if they are identical).

The number of contacts n can be calculated using the 
so called globular model of porous structure [32].

,� (3)

where z is the coordination number, φ is the volume 
concentration of particles, and d is their average size.

Based on the analysis of the above-mentioned ratios 
of the strength of disperse systems, we can determine 
the following parameters for modelling the structure of 
mixtures for 3D printing:

– concentration of the dispersed phase in the disper-
sion medium φ, which determines the thickness of the 
interlayer (the distance between particles hi) between the 
particles of the solid phase.

– particle size dc, which determines the balance of 
adhesion strengths fc between the particles and the weight 
of particles G* in the dispersion medium.

– the shape and size distribution of particles, which 
determine the type of packing and the number of particle 
contacts.

Within these parameters, the justification of criterial 
requirements for the characteristics of fillers is based on 
the model of packing of polydisperse spherical particles 
suggested in [33]. The principle of the model is as follows: 
a certain volume Vtot is successively filled with spheres of 
decreasing radius r0 = rmax, r1,…, rn., and the radius of the 
spheres decreases as soon as the volume is completely 

filled with spheres of a larger radius. The gaps between 
large spheres are filled with spheres of smaller radius 
r1 < r0, so that each gap between spheres r0 has not one, 
but several spheres r1. This condition provides greater 
thermodynamic stability of the obtained package. The 
volume is being filled until the size of the spheres reaches 
rmin. As a result of laying, we obtain the following filling 
density:

� (4)

� (5)

where ϕ0 is the packing density of spheres with maxi-
mum radius (for disordered packing –ϕ0=0,64); μ(ri/
ri–1) is the correction factor of less than one, which takes 
into account that not the whole volume of voids between 
spheres r1 can be filled, ρeff is the reduced density of the 
particle in dispersion medium (ρeff = ρ0–ρ1, ρ0 is solid 
phase density, ρ1 is dispersion media density), d is typical 
particle size, and g is gravity acceleration. 

If the radii of the spheres are within the range from 
rmin to rmax, and rmin<< rmax., the continuous range of radii 
values must be replaced with a set of discreet values 
determined by the formula:

,� (6)

where δ < 1 is the discretisation parameter.
Based on these model representations, it is suggested 

to introduce the following numerical criteria for the evalu-
ation of fillers:

1) average particle diameter, dc

,� (7)

Table 1
Materials characteristics 

Material type Characteristics Size Role in the formation 
of mixture properties

Metakaolin  «VMK-45» according to 
TU 23.99.19-004-34556001-2017 Nano- Viscosity modifier

Aleuropelite SiO2 content 82–90%, 
size distribution 0–0.06 mm Micro- Ultrafine aggregate

Crushed limestone Limestone powder size distribution 
0–0.2 mm according to GOST 26826-86 Micro- Ultrafine aggregate

Fly ash Size distribution 0-0.2 mm 
GOST 25818-2017 Micro- Ultrafine aggregate

Sand Quartz sand, SiO2 content ~ 95%, 
size distribution 0–1.2 mm Fine Fine aggregate

Cement CEM I 42.5R Micro- Binder
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where ci is partial residuals on sieves, %; d1 is diameter 
taken as average for a certain interval (fraction), µm;

2) particle shape factor, ks. Calculated as the arith-
metic average of three linear sizes (length l, width b, and 
height h):

.� (8)

Taking into account that the particle size is determined 
using microscopic analysis, it is difficult to find one of the 
three sizes. In this case, the shape factor is calculated with 
the following two parameters:

,� (9)

Fig. 2. SEM-micrographs of powders. Designated: a) Metakaolin; b) Aleuropelite; c) Crushed limestone; d) Fly ash; 
e) Sand; f) Cement

a b

c d
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Table 2
Numerical criteria for the evaluation of fillers

Material type Average particle 
diameter dc, µm Particle shape factor, ks.

Particle distribution 
constant gpc

Metakaolin 18.3 1.50 10.9
Aleuropelite 17.5 2.33 8.0
Crushed limestone 66.4 1.46 19.9
Fly ash 74.98 1.05 7.4
Sand 438.5 1.30 2.4
Cement 22.6 1.52 8.1

Fig. 3. Particle size distribution curves. Designated: a) Metakaolin; b) Aleuropelite; c) Crushed limestone; 
d) Fly ash; e) Sand; f) Cement
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