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ABSTRACT: Introduction. Reducing the density, increasing the strength and other physical-technical characteristics of lightweight 
concretes are urgent tasks of modern building materials science. To solve them, it is necessary to consider new approaches to the 
development of compositions of cement systems using effective porous aggregates, binders, chemical and mineral additives, 
including different nanomodifiers (carbon nanotubes, fullerenes, nanoparticles of SiO2, Al2O3, Fe2O3, etc.). The complexity of design-
ing modified cement concretes is largely due to their multicomponent nature and a large number of parameters affecting the key 
characteristics of material. The qualitative solution of such multicriteria problems is possible with the complex implementation of 
rational physical and computational experiments using mathematical modeling and computer technology. New opportunities for 
modeling of structure formation processes and predicting properties of multicomponent building materials are emerging with 
the development of machine learning methods. The purpose of this study is to develop machine learning algorithms that can ef-
ficiently establish quantitative dependences for the compressive strength of modified lightweight concretes on their composition, 
as well as to identify the optimal variation ranges of prescription parameters based on the obtained multifactor models to achieve 
the required level of controlled mechanical characteristic. Methods and materials. The processing and analysis of experimental 
research results were carried out using modern methods of machine learning with a teacher used in the problems of regression 
recovery, knowledge extraction and forecasting. To implement the developed machine learning algorithms, libraries in the Python 
programming language, in particular NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn, were used. Results and discussion. It is 
established that the gradient boosting model is the most accurate type among the obtained machine learning models. It is char-
acterized by the following quality metrics: R2 = 0.9557; MAE = 2.4847; MSE = 12.7704; RMSE=3.5736; MAPE = 11.1813%. According 
to the analysis of this multifactor model, the optimal dosages of pozzolanic and expanding modifiers amounted to 4.5–6.0% and 
6.0–7.5% of the binder weight (Portland cement + modifier), respectively, which ensured achievement of the required level of com-
pressive strength (40–70 MPa) of lightweight concretes at the age of 28 days at material density reduced by 3–10% (the range under 
consideration is 1200–1900 kg/m3). Conclusions. Thus, the study results show the prospects of using machine learning methods 
for design compositions and predicting properties of multicomponent cement systems.
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INTRODUCTION

The development of physico-chemical and techno-
logical bases for the obtaining of modified cement 

systems characterized by complex of high performance 
characteristics is actual direction of modern building ma-

terials science [1–7]. It is known that the display proper-
ties of such concretes during operation depends on their 
composition, structure and state [8].

The work [9] summarizes the main generalized prin-
ciples of forming the structure of high performance ce-
ment concretes: providing increased density at each of the 
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scale levels of material structure (macro-, meso-, micro-, 
nano-) along with a maximally increased area of inter-
component interface; increasing the strength of structural 
bonds; achieving optimal uniformity – non-uniformity of 
structure; optimizing content of structural components to 
ensure the required level of material performance proper-
ties (strength, elasticity, impact toughness, permeability, 
corrosion resistance, etc.) under mechanical loading and 
exposure to the environment.

High-strength lightweight concretes, which have in-
creased strength characteristics at reduced material den-
sity, are one of the promising types of modified cement 
systems. Global experience shows that it is possible to 
achieve high specific strength of lightweight concretes by 
using specially selected porous aggregates, by optimiza-
tion of the binder and frame-forming components, and by 
using nanomodifiers [10–14]. At the same time, among 
porous aggregates, expanded clay, glass and aluminosili-
cate hollow microspheres, porous rocks of volcanic origin, 
processing products of multi-tonnage technogenic wastes 
from metallurgy and thermal power engineering, etc. have 
shown their efficiency in the formulation of structural 
lightweight concretes [14–16].

Separately, it is worth dwelling on the importance of 
using various kinds of modifiers in the compositions of 
high perfomance cement systems, namely chemical and 
mineral additives used individually or combined into 
complexes according to the principles of additivity and 
synergy. In particular, the following modifiers are most 
effective for the formulation of high-strength concretes:
• plasticizing additives to significantly improve the tech-

nological characteristics of concrete mixtures and the 
physical-mechanical properties of concretes due to 
the ability to exert a water-reducing and plasticizing 
effects on cement systems [17–19];

• finely dispersed pozzolanic additives of natural and 
technogenic origin, characterized mainly by silicate 
and aluminosilicate composition with an increased 
content of amorphous silica and alumina, as well as 
other reactive phases: opal-cristobalite rocks [20–22], 
metakaolin and calcined polymineral clays [23–26], 
silica fume [27, 28], fly ash [29, 30], blast furnace slag 
[30], etc.;

• expanding additives of the sulfoaluminate type [31–
33], which have the ability to control deformations of 
cement stone by stimulating and intensifying the for-
mation of crystalline hydrates with increased volume 
(ettringite, etc.);

• promising nanomodifiers (carbon nanotubes, fuller-
enes, nanoparticles of SiO2, Al2O3, Fe2O3, etc.) that 
improve the elastic-strength characteristics of cement 
stone, reduce shrinkage deformations of concretes and 
their permeability to aggressive environments due to 
the possibility of controlling the structural and energy 
state of interphase boundaries, directional change in 

the quality of solid phase and pore space geometry [4, 
34–36].
Currently, despite the unremitting interest in high 

performance concretes, relatively simple and universal 
methods for designing compositions and predicting their 
properties have not yet been found. This is largely due to 
the multicomponent nature of modified cement systems, 
as well as a large number of parameters affecting the key 
characteristics of material.

At the moment, one of the most popular methods 
used to optimize the prescription-technological param-
eters for obtaining multicomponent building materi-
als is experimental and statistical modeling [36–39]. 
However, this method not only requires the correct 
formulation of a relatively complex multicriteria prob-
lem, but is often characterized by relatively low accuracy 
of ES-models obtained as a result of processing small 
amounts of data in the presence of numerous assump-
tions about them.

With the development of artificial intelligence tech-
nologies, new opportunities appear in the design of multi-
component building materials, including modified cement 
systems. The research results obtained by some foreign 
authors concerning the application of machine learning 
methods for predicting the properties of high performance 
concretes [40–43] testify to this. It is worth noting that the 
increasing number of publications on the subjects under 
consideration confirms the intensive development of this 
scientific direction.

The purpose of this study was to develop machine 
learning algorithms that can efficiently establish quantita-
tive dependences for the compressive strength of modified 
lightweight concretes on their composition, as well as 
to identify the optimal variation ranges of prescription 
parameters based on the obtained multifactor models 
to achieve the required level of controlled mechanical 
characteristic.

The following tasks were solved during the research:
1) the required amount of experimental data was ob-

tained;
2) the machine learning task by precedents was for-

mulated;
3) the experimental data preprocessing and extraction 

of signs from them were performed; 
4) the choice of types of multiparameter models and 

development of machine learning algorithms for their 
obtaining were carried out;

5) the data preparation for training and evaluation 
(training and test samples) was performed; training, as 
well as solving the problems of optimization and retraining 
of models were carried out;

6) the quality of machine learning models was evalu-
ated;

7) based on the analysis of the most effective model 
the optimization of the content of complex mineral ad-

http://nanobuild.ru/ru_RU/


http://nanobuild.ru info@nanobuild.ru

Nanotechnologies in construction
Нанотехнологии в строительстве

2023; 15 (2): 
171–186

THE RESULTS OF THE SPECIALISTS’ AND SCIENTISTS’ RESEARCHES

173

ditives (pozzolanic and expanding modifiers) to achieve 
the required level of compressive strength of lightweight 
concretes at the age of 28 days was carried out.

METHODS AND MATERIALS

Materials

The following main components were used to obtain 
the high-strength lightweight concretes:
• Portland cement CEM I 42.5R (PC) produced by 

Mordovcement PJSC;
• medium natural quartz sand (QS) of the Khromtsovsky 

deposit (Ivanovo region) with fineness modulus (mod-
ule size) Мfm = 2.1;

• hollow glass microspheres (HGM) grade ForeSphere 
3000 with predominant particle size of 30–160 mi-
crons, hydrostatic compressive strength of at least 
20 atm (3000 psi), true and bulk density of 0.53 g/cm3 
and 0.3 g/cm3, respectively, produced by Russian com-
pany Fores LLC;

• polycarboxylate superplasticizer (PS) grade Melflux 
1641 F produced by BASF Construction Additives;

•  two types of complex mineral additives (MA) with 
particle size distribution in the micrometer and upper 
nanometer ranges:
1) silicon pozzolanic modifier (SPM) is two-compo-

nent powder material with specific surface area of Sss = 
1.85 m2/g obtained by grinding the mixture of opal-cris-
tobalite rocks from deposits of the Republic of Mordovia 
(diatomite + opoka);

2) sulfoaluminosilicate expanding modifier (SEM) 
is two-component powder material with specific surface 
area of Sss = 0.6 m2/g obtained by grinding and calcination 
the mixture of polymineral clay rock from deposit of the 
Republic of Mordovia and semi-aquatic molding gypsum 
grade G-6 B III (the Russian State Standard GOST 125-
2018) produced by Magma LLC.

Methods

The processing and analysis of experimental research 
results were carried out using modern methods of ma-
chine learning with a teacher used in the problems of 
regression recovery, knowledge extraction and forecast-
ing. To implement the developed machine learning algo-
rithms, libraries in the Python programming language, 
in particular NumPy, Pandas, Scikit-learn, Matplotlib, 
Seaborn, were used.

The process of solving machine learning tasks in-
cluded the following main stages: problem statement; 
preprocessing experimental data and extracting features 
from them; selection of types of multiparameter models; 
preparation of data for training and evaluation (training 
and test samples); training, solving problems of optimi-

zation and retraining, evaluating the quality of models; 
selection of the most effective model; the final presenta-
tion of results.

Data preprocessing

We used the correlation matrix and the variance infla-
tion factor (VIF) to test the data for multicollinearity. The 
formula for calculating VIF looks like:

 (1)

where R2
j is the determination coefficient of the j-th 

attribute.
When the value of VIFj > 10 it is considered that the  

j-th factor has multicollinearity.
The principal component analysis (PCA) was used to 

eliminate the multicollinearity of attributes.
Since the input parameters were characterized by dif-

ferent scales and ranges of variation, their normalization 
was performed at the final stage of data preprocessing. 
The following data normalization formula was used in the 
paper to prevent an imbalance between the influence of 
the input variables, and hence to avoid obtaining incor-
rect dependencies:

 (2)

where xnorm and x are the normalized and current values 
of each input variable;

xmin and xmax are the minimum and maximum values 
of each input variable.

Machine learning models used

The study used following machine learning models:
1. Linear regression is model of type:

 (3)

The model parameters are the weights coefficients 
w, which are found through gradient learning methods.

2. Automatic relevance determination (ARD regression) 
is type of Bayesian regression in which posteriori variance 
estimate is derived for each coefficient. In the next step, 
the coefficients characterized by low value of variance 
are zeroed.

3. Decision tree with hyperparameter search is non-
parametric supervised machine learning algorithm. This 
model is characterized by its ability to predict the value 
of the target variable based on the study of simple deci-
sion rules derived from the characteristics of the data. 
The decision tree can be viewed as piecewise constant 
approximation. The functional of quality Q(Rm, j, s) in 
this case has the following form:
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 (4)

where Rl and Rr are objects falling, respectively, into 
the left and right subtree at given predicate; 

Rm is set of objects that fell into the vertex being split 
at the given step;

j is the input parameter number, according to which 
the partition is carried out in this predicate;

s is the classifier threshold dividing the set Rm into the 
right and left subtree;

H(Rl), H(Rr) and H(Rm) are the informativity cri-
terions evaluating the quality of the distribution of the 
target variable among the objects of the sets Rl, Rr и Rm, 
respectively. 

For regression problems, the informativeness criterion 
H(Rm) looks as follows:

 (5)

where yi and xi are the values of the output and input 
parameters for the i-th sample object belonging to the set 
Rm, respectively;

yj and xj are the values of the output and input pa-
rameters for the j-th sample object belonging to the set 
Rm, respectively.

To improve the quality of this machine learning mod-
el, its hyperparameters were configured, i.e., the param-
eters defined before the start of the learning process. The 
search for the optimal set of hyperparameters was per-
formed using the GridSearch method.

4. Bagging regressor is ensemble algorithm that selects 
baseline regressors for each of the random subsets of the 
original data set and then combines and averages their 
individual predictions to obtain the final predicted result.

5. Random forest is ensemble of independent decision 
trees, in the training of which for each partition the at-
tributes are selected from some random subset of features. 
The final classifier a(x) for the regression problem is the 
average of trees bi(x):

 (6)

where K is the total number of decision trees bi(x) in 
the ensemble, it is the matched parameter.

6. Gradient boosting is machine learning method that 
creates decisive prediction model aK(x) as ensemble of K 
basic algorithms b1, … ,bK:

 (7)

where K is the total number of basic prediction algo-
rithms bi(x). Decision trees of fixed length were used as 
the basic algorithm in this model.

гi are numerical coefficients for the basic algorithms 
bi(x), i = .

The use of this method allows building the model 
step by step with the possibility of optimizing an arbi-
trary differentiable loss function. At the stage when the 
composition from the K–1 algorithm is obtained, the next 
basic algorithm bK(x) is formed based on minimizing the 
construction error and approximating the gradient of loss 
function siK on the training sample:

 (8)

 (9)

where L is the selected loss function, most often it is 
quadratic;

N is the training sample size;
yi and xi are the current values of the output and input 

parameters for the i-th sample object, respectively; 
aK–1(x) is the regression model at step K–1.
After finding the base algorithm bK(x), the coefficient 

for it гK is determined:

 (10)

7. Gradient boosting with the search for optimal hyper-
parameters by using the GridSearch method.

Model quality metrics

We used the coefficient of determination R2 to assess 
the quality of machine learning models. The formula for 
calculating this metric looks like:

 (11)

where yi and i are the actual and predicted values of 
the target variable for the i-th object of the test sample, 
respectively;

ӯ is average of the actual values;
l is the total number of test sample objects.
The following regression error metrics were used to 

estimate the deviation of model predictions from true 
values:
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1. The mean absolute error (MAE), which is calculated 
by the formula:

 (12)

When using this metric, model error is calculated as 
the average of absolute differences between targets and 
predictions. MAE is linear estimate in which the distinc-
tions for each object are weighted equally on average. 

2. The mean squared error (MSE). For each point, the 
square of the difference between the predicted and target 
values of the model is calculated, and then these values 
are averaged. The calculation formula for this metric is 
the following:

 (13)

3. The root mean squared error (RMSE), which is the 
square root of the MSE:

 (14)

4. The mean absolute percentage error (MAPE), which 
is calculated by the formula:

 (15)

where yi and i in l formulas (12), (13), (14), and (15) 
are the same as in formula (11).

The MAPE indicator is relative error calculated for the 
analyzed object from the training data set by dividing the 
absolute error by the target value. Thus, MAPE can also 
be considered as weighted version of MAE. This metric 
can be used to compare the efficiency of models on dif-
ferent training samples.

In conditions of small data set, cross-validation (CV) 
was used to accurately calculate the metrics of the ana-
lyzed models. In the k-fold CV approach, the training 
sample is split into k parts, and k iterations is performed. 
At each iteration, the model is trained on the k–1 group 
and tested on the remainder of the data not used in train-
ing. The performance measure CV (a, XL) reported by 
k-fold cross-validation is the average of the parameters 
computed in the loop:

 (16)

where a(x) is the machine learning model;
Q is metric;
XL is the entire training sample;
Xki is part of the training sample with the number ki.

Additional validation tests

In addition to the quality metric R2 and the above-
mentioned error metrics, the following tests to evaluate 
their quality used for additional comparison of the most 
effective models:

1. The REC curve analysis of the model. To compare 
the regression models with each other, as well as with 
the baseline forecast, we built REC-curves, the graph of 
which shows the accuracy of the model depending on the 
acceptable error size. Next, we calculated the Area Over 
Curve (AOC) for the model under study (AOCmodel) and 
the baseline forecast (AOCbaseline), followed by an assess-
ment of its quality based on the ratio AOCmodel/AOCbaseline.

The area over the REC-curve is asymptotically equal 
to the error mathematical expectation, which allows using 
this metric for model comparison.

2. Spearman correlation coefficient, which is estimate 
of the measure of the linear relationship between random 
variables and calculated by the formula:

 (17)

where rgy, rg  are the ranks of actual and predicted 
values;

σrgy
, σrg  are the variance of actual and predicted val-

ues, respectively.
Calculation of this coefficient allows for assessing the 

degree of consistency between the predicted and actual 
values of the studied parameter.

3. Building the learning curve, which is graph of chang-
es in the learning rate of the model. This test makes allows 
to establish the degree of initial learning difficulty and 
determine the level of accuracy of the model fitting, its 
retraining, as well as the data representativeness.

RESULTS AND DISCUSSION

Description of the analyzed dataset

Experimental data set of 407 records (points) was used 
to build machine learning models. The inputs were 8 vary-
ing parameters: the age of lightweight concrete (days) and 
the consumption of the main prescription components 
(kg/m3), in particular, Portland cement (PC); silicon 
pozzolanic (SPM) and sulfoaluminosilicate expanding 
(SEM) modifiers; polycarboxylate superplasticizer (PS), 
natural quartz sand (QS), hollow glass microspheres 

http://nanobuild.ru/ru_RU/
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Table 1 
Statistical characteristics of the dataset

S
ta

tis
tic

al
 

in
di

ca
to

rs

Target 
parameter

Input parameters

Age of 
con-

crete, 
days

Consumption of prescription components, kg/m3

Compressive 
strength, MPa PC SPM SEM PS QS HGM W

count 407.00
mean 45.41 21.64 675.85 26.56 31.17 7.33 420.58 163.12 285.08
std 16.40 10.71 44.91 38.27 41.57 0.19 261.78 45.62 19.05
min 3.70 1.00 595.00 0.00 0.00 7.00 56.00 97.60 255.20
25% 37.85 7.00 641.20 0.00 0.00 7.20 194.45 124.40 266.60
50% 47.80 28.00 675.90 0.00 0.00 7.30 410.80 165.00 285.90
75% 57.50 28.00 711.80 54.80 57.20 7.50 638.60 203.20 302.60
max 72.10 28.00 764.10 112.60 114.00 7.60 794.70 227.80 313.20

(HGM), and water (W). The target variable under study 
was compressive strength (MPa). 

Table 1 shows the statistical characteristics of the ex-
perimental data under study. Analysis of the values of 
the target and input parameters showed that none of the 
variables had outliers.

Figure 1 shows plots of pairwise dependences of the 
compressive strength of lightweight concrete on the con-
sumption of prescription components and the age of the 
material. According to the study results, it was found that 
there was no linear correlation between the target indica-
tor and each input parameter, which indicated the pres-
ence of complex nonlinear relationships in the binary 
system “Compressive strength – flow rate of the prescrip-
tion component / age of concrete”.

The next step was to check the input parameters for 
collinearity by using the results of data correlation analy-
sis and calculating the variance inflation factor (VIF). 
Figure 2 shows the correlation matrix in the form of a so-
called “heat map”.

The correlation matrix shows linear relationship 
between the parameters “Superplasticizer”, “Sand”, 
“Micro spheres” and “Water”. In turn, the results of the 
VIF calculation indicate the presence of multicollinearity 
in these input parameters, which can reduce efficiency of 
the developed machine learning algorithms. The study 
used the principal component analysis method to over-
come multicollinearity in data preprocessing.

Model training

The training dataset was divided into training and 
test samples in a ratio of 65/35 (265 objects (data points) 

were used for training models, and 142 were used for 
testing).

Figures 3, 4, and 5 show changes in the actual values 
of the investigated output parameter over the entire set of 
experimental data compared to the values predicted by 
each developed machine learning algorithm. It was found 
that the models “Linear Regression”, “ARD”, “Bagging 
Regressor” and “Random Forest” were prone to some 
overestimation of the values of compressive strength of 
lightweight concrete.

Table 2 shows the quality metrics of the developed 
machine learning models (values of the determination 
coefficient R2 and regression errors MAE, MSE, RMSE, 
MAPE).

The following machine learning models were found 
to have the highest values of the determination coeffi-
cient: gradient boosting (R2 = 0.9557), gradient boost-
ing with the search for optimal hyperparameters (R2 = 
0.9465), bagging regressor (R2 = 0.9411), and random 
forest (R2 = 0.9401). The other algorithms, despite suf-
ficiently high values of the analyzed parameter of model 
quality, showed reduced efficiency, especially on test 
data. In particular, it is worth noting the significant 
deviation of the test and training data from the model 
straight line for linear regression and ARD (Fig. 6, a, 
b, c, d).

In addition, based on the results of the analysis of 
the training graphs, we can conclude the overfitting of 
the obtained decision tree model. This is confirmed by 
the crowding of the training data around the model line 
with minimum number of outliers (Fig. 6, e), as well as 
a noticeable decrease in the determination coefficient as 
a result of algorithm processing of the test data (Fig. 6, f).
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Fig. 1. Graphs of pairwise dependencies of the target indicator “Compressive strength of lightweight concrete” 
on separate input parameters (consumption of prescription components and age of the material)
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It is worth noting that, according to Table 2, the lowest 
regression error values have the “Gradient Boosting” and 
“Gradient Boosting with the Search for Optimal Hyper-
parameters” models: MAE = 2.4847–2.4917; MSE = 
12.7704–15.4094; RMSE = 3.5736–3.9255; MAPE = 
11.1813–11.6773%. In this case, among the developed 
machine learning models, the most accurate is the gra-
dient boosting model characterized by the following pa-
rameters :Huber loss function; maximum tree depth is 10; 
minimum number of samples required for a finite node 
is 6; minimum number of samples required to divide an 
internal node is 10; the number of trees is 1100. Figure 7 
shows the results of evaluating the efficiency of the gradi-
ent boosting algorithm on the training and test parts of 
the experimental data.

Optimization of the content of complex mineral modifiers
in the compositions of high-strength lightweight concretes

At the final stage, based on the analysis of the de-
veloped multifactorial model of gradient boosting, op-
timization of the content of complex mineral additives 

(silicon pozzolanic (SPM) and sulfoaluminosilicate 
expanding (SEM) modifiers) was conducted to achieve 
the required level of the studied strength characteristics 
of concretes at the age of 28 days. To effectively solve 
the task, graphs were plotted in the form of isolines of 
changes in the compressive strength of lightweight con-
cretes depending on the content of hollow glass micro-
spheres, as well as dosages of pozzolanic and expanding 
additives (Figure 8). 

According to the results of the analysis of obtained 
graphic dependencies, it was found that the optimum 
dosages of silicon pozzolanic and sulfoaluminosilicate 
expanding modifiers amounted to 4.5–6.0 and 6.0–7.5% 
of the binder weight (Portland cement (PC) + mineral 
additive (MA)), respectively. The use of additives SPM 
and SEM in the indicated concentrations ensured the 
achievement of the required level of strength indicator 
(40–70 MPa) at reduced by 3–10% (the range under 
consideration is 1200–1900 kg/m3) due to the possibility 
of increasing the content of microspheres (by 2–4% of 
the binder weight) without compromising the mechani-
cal characteristic. In this case, according to Figure 8, the 

Fig. 2. Correlation matrix of input parameters
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Fig. 3. Comparison of actual and predicted values of compressive strength of lightweight concrete on the entire dataset 
using the following machine learning models: (a) linear regression; (b) ARD; (c) decision tree

a

b

c
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Fig. 4. Comparison of actual and predicted values of compressive strength of lightweight concrete on the entire dataset 
using the following machine learning models: (a) bagging regressor; (b) random forest; (c) gradient boosting
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increase in compressive strength of lightweight concretes 
up to the level of 70–73 MPa can be achieved at the dos-
ages of hollow microspheres, pozzolanic and expanding 
modifiers 13%; 2–7% and 2–10% of binder weight (PC + 
MA), respectively.

CONCLUSIONS 

The conducted scientific studies allowed to develop 
machine learning algorithms that can effectively establish 
quantitative dependences for the compressive strength 

of modified lightweight concretes on their composition. 
Based on the results of the analysis of the obtained multi-
factor models, the optimal variation ranges of dosages of 
the pozzolanic and expanding modifiers were identified, 
which ensured the achievement of the required level of 
controlled mechanical characteristic at reduced material 
density.

The study results showed the prospects of using ma-
chine learning methods for design compositions and 
predicting properties of multicomponent lightweight 
concretes.

Table 2 
Quality metrics of the developed machine learning models (values of determination coefficient and regression errors)

Machine learning models
Quality metrics of models

R2 MAE MSE RMSE MAPE (%)

Linear regression 0.7374 6.0752 75.6671 8.6987 31.5038

ARD 0.7361 6.0861 76.0399 8.7201 31.6589

Decision tree 0.8953 3.4091 30.1583 5.4917 15.5677

Bagging regressor 0.9411 2.7292 16.9749 4.1201 13.3829

Random forest 0.9401 2.7790 17.2584 4.1543 14.0700

Gradient boosting 0.9557 2.4847 12.7704 3.5736 11.1813

Gradient boosting with the search for 
optimal hyperparameters 0.9465 2.4917 15.4094 3.9255 11.6773

Fig. 5. Comparison of actual and predicted values of compressive strength of lightweight concrete on the entire dataset 
using the machine learning model “Gradient boosting with the search for optimal hyperparameters”
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Fig. 6. Efficiency of the linear regression (a, b), ARD (c, d), and decision tree (e, f) algorithms on the training (a, c, e) 
and test (b, d, f) parts of the experimental data (the red line indicates the model line)
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Fig. 7. Efficiency of the gradient boosting algorithm on the training (a) and test (b) parts of the experimental data 
(the red line indicates the model line)

Fig. 8. Isolines of changes in the compressive strength of lightweight concretes at the age of 28 days depending on the 
content of hollow glass microspheres, dosages of pozzolanic (a) and expanding (b) additives

a b

a b
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