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ABSTRACT: Introduction. In connection with the growing demand for living and working conditions in civil and industrial con-
struction, there is an increasing need for high-quality building materials with the required set of performance properties. Polymer 
reinforced composite materials are promising materials in the construction industry due to their high strength, durability, reliability 
and economy. Polymers such as polyvinyl chloride, polyurethanes, polyacrylates, epoxy resins, polypropylene are used in construc-
tion for the manufacture of decorative elements, self-leveling floors, coatings for appliances and equipment. However, the use of 
polymeric materials creates risks of electric shock due to the generation of static charge. The use of electrically conductive nanoma-
terials as fillers makes it possible to reduce the resistivity of polymeric materials and slow down the flow of electric charges. Main 
part. This review article presents the benefits and drawbacks of antistatic additives for polymer materials used in industry and in 
the construction industry. Conclusion. An analysis of the literature has shown that over the past seven years, the largest number 
of relevant papers has been devoted to carbon materials as antistatic additives (8 articles), metal and metal oxide nanoparticles 
(7 articles), ionic liquids (7 articles), and polyaniline (7 articles). The most studied characteristics of antistatic polymer materials are the 
specific surface RS and volume RV resistances. According to the reviewed articles, metal and metal oxide nanoparticles are the most 
suitable antistatic additives to polymeric materials, since they are well dispersed in the polymer matrix. However, further research 
is needed to eliminate the negative effect of nanoparticles on the mechanical properties of polymeric materials.
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INTRODUCTION

Static electricity is a serious problem for industrial pro-
duction [1], industrial and civil construction, hospital 

wards [2]. This is explained by the fact that static charges 
create a fire and explosion hazard [3, 4]. Static electricity 
is caused by accumulation of positive or negative charges 
on the surface of polymer coatings and paintwork mate-
rials, for example, an excess of electrons due to surface 
friction upon contact with dust [5, 6]. Instruments, equip-
ment and packaging used at industrial plants are made of 
polymeric materials with high surface resistivity, which is 
about 1011–1014 Ω/cm2 [7]. To eliminate static electricity 
at industrial plants and in the household, it is necessary 
to develop antistatic coatings for measuring instruments 
and equipment, panels of internal and external walls of 
buildings, which, unlike polymers, have high electrical 
conductivity and allow safe discharge of excess charge into 

the ground [8]. To remove the charge, the coating must 
have an electrical resistivity in the range of 103–1010 Ω/
cm2 [9]. With a lower resistivity, the risk of electric shock 
to the human body increases [10].

Conductive ionic liquids [11], metal [12] and metal 
oxide [13] nanoparticles, carbon nanotubes [14], graphene 
oxide nanosheets [15], conductive polymers (polyaniline, 
polythiophene, polypyrrole) [16], and surfactants [17] are 
used as additives to polymer coatings that endow them 
with antistatic properties.

Nanomaterials are widely used in the construction 
industry. Nanoparticles are added to paints and varnishes 
to make them antistatic and scratch resistant and to pro-
tect them against dust and fog. The adhesives used for the 
manufacture of antistatic floors based on nanomaterials 
have a high electrical conductivity [18]. Coatings contain-
ing nanomaterials reduce dust adhesion on photovoltaic 
panels that are placed on the roofs of eco-buildings [19].
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The development of antistatic additives for polymer 
coatings is a promising area of research, as evidenced by 
a large number of articles published in the period of 2010–
2022, according to the Scopus database (Figure 1). From 
the above data, it can be seen that the greatest interest in 
this topic was observed in 2016, while the smallest interest 
was expressed in 2015. In 2022, the number of publications 
has decreased with respect to 2016, but the interest in anti-
static coatings is still high (30 articles per year).

CARBON-BASED ANTISTATIC ADDITIVES

Carbon-based conductive fillers include carbon black 
[20, 21], carbon fibers [1, 22], carbon nanotubes [13, 
23–26], graphite [27], graphene [28, 29], and graphene 
oxide (GO) [30, 31].

Carbon nanotubes

Carbon nanotubes, particularly multi-walled carbon 
nanotubes (MWCNTs), are used most widely due to their 
low weight, large aspect ratio, good mechanical proper-
ties, chemical stability, and electrical conductivity com-
parable to that of metals [32].

The main disadvantage of using carbon nanotubes in 
antistatic polymer coatings is their low degree of disper-
sion in polymer matrices, especially in highly crystalline 
polymers, due to their entanglement and aggregation into 
bundles [33, 34]. This is caused mainly by high energy 
of van der Waals interactions and electrostatic forces in 
MWCNTs. To improve the dispersion of MWCNTs in the 
polymer, the nanotubes are treated with stabilizing com-
pounds using covalent and non-covalent (or ultrasonic) 
modification [35, 36].

The non-covalent modification without the formation 
of chemical bonds between MWCNTs and the stabilizer 
is the method of choice, since the covalent modifica-
tion may cause rupture into shorter segments [37]. For 

example, Yan W. et al. used environmentally friendly and 
cheap tannic acid as a stabilizer. The authors attributed 
the stabilizing effect to the formation of non-covalent π-π 
bonds between the aromatic phenol rings of tannic acid 
and graphene structures of the nanotubes [38].

Liu L. et al. [39] used MWCNTs (Seoul, Korea, 10–
20 nm in diameter, 20–100 μm long) stabilized with en-
vironmentally friendly poly(tannin urethane) to produce 
an antistatic coating based on poly(vinyl chloride) (PVC).

When MWCNTs were added to the polymer, the sur-
face resistance decreased from 1016 to 108 Ω/cm2. More-
over, the content of the antistatic additive was low and 
amounted to 0.5 wt. %. Poly(tannin urethane) showed an 
excellent dispersing ability for MWCNTs. Considering the 
poly(tannin urethane) structure, the authors concluded 
that the aromatic rings of poly(tannin urethane) were 
attached to the MWCNT surface via π–π interactions, 
which promoted disaggregation [40].

The authors [39] compared the characteristics of 
the fabricated PVC coating with the coatings based on 
polyurethane-containing MWCNTs and found that the 
coating showed similar surface resistivity characteristics 
[39, 41].

Cyanuric acid and an ionomer based on the ethylene-
co-acid-co-sodium acid copolymer were used to enhance 
the MWCNT dispersion in the polyoxymethylene matrix 
and to improve the electrical properties (electrical con-
ductivity, surface resistance) of the polymer nanocom-
posite [42]. As a result, the surface resistance of the com-
posites was reduced by an order of magnitude compared 
to pure polyoxymethylene (Figure 2). It was found that 
the most pronounced decrease in the surface resistance 
is achieved at an ionomer concentration of 3 wt. % (Fig-
ure 2 a) and cyanuric acid concentration of 0.5 wt. % 
(Figure 2 b). The authors explained the MWCNT stabi-
lization by non-covalent π-π interaction with the exter-
nal surface of the nanotube (wrapping of nanotubes) for 
cyanuric acid and cation-π interaction for the ionomer.

Fig. 1. Number of articles according to the Scopus database (search query: antistatic coatings)
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However, the disadvantage of polymeric materials ob-
tained in [39, 42] is weak adhesion, which leads to a short 
service life and environmental pollution, as well as to low 
tensile strength and impact strength.

Reduced graphene oxide as an antistatic additive

Reduced graphene oxide (rGO) nanosheets, like carbon 
nanotubes, have high mechanical strength, large specific 

surface area, and high electrical conductivity, which makes 
them promising for use in polymer composites as antistatic 
agents [43–46]. However, the disadvantage of graphene 
oxide nanosheets, unlike nanoparticles of metals and metal 
oxides, is their poor dispersibility in the polymer matrix, 
which makes it difficult to create electron-conducting paths 
[47, 48]; one more drawback is low stability. To improve the 
dispersibility, graphene oxide is coated in situ with chemical 
modifiers, in particular surfactants [49, 50] or polymers 

Fig. 2. Surface resistance of composites containing MWCNTs the surface of which is coated with ionomer (a), 
cyanuric acid (b), and ionomer and cyanuric acid (c) vs. concentration of the additive. С are nanotubes, 
I is ionomer, A is cyanuric acid [42]
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[51]. For example, polydopamine with catechol, amino, 
and imino functional groups covalently grafted to GO sur-
face provides good dispersibility with polyurethane due to 
improved interfacial adhesion [52]. The poor dispersibility 
and tendency to aggregation and exfoliation of reduced 
graphene oxide nanosheets is due to van der Waals forces 
at the nanosheet interface [53].

The chemical modification of graphene oxide with di-
methylformamide and carboxylic acids generated a posi-
tive charge on graphene sheets with a zeta potential of 
about 20 mV [54]. The addition of rGO to water-based 
polyurethane coatings made it possible to reduce the 
surface electrical resistance by five orders of magnitude. 
In the presence of 3 wt. % rGO, the surface electrical 
resistance was 5.4 109 Ω/cm2, which is sufficient for the 
manufacture of antistatic coatings. The authors attributed 
this fact to sp2 hybridization in the rGO structure. The use 
of rGO nanohybrids with conductive polymers, in par-
ticular polyaniline, reduced the surface resistivity down 
to 106 Ω/cm2 [54]. According to the authors [54], this was 
a result of the synergistic effect of rGO and polyaniline 
caused by the conjugated structure of polyaniline.

However, the authors [54] did not provide a detailed 
explanation of how the conducting paths are formed in 
the polyurethane matrix, which is a significant drawback 
of the study.

In another work [55], rGO nanosheets and copper 
nanoparticles were introduced into a polyurethane coating 
(the content of the additives was 3 wt. %). This resulted in 
a decrease in the surface resistivity of polyurethane from 
1014 Ω/cm2 to 109 Ω/cm2. The authors suggested that the 
synergistic antistatic effect was due to the formation of 
conducting paths by copper nanoparticles, which acted 
as conductors between the rGO nanosheets (Figure 3).

Thus, small amounts of carbon-based additives reduce 
the surface resistivity of polymeric materials by several 
orders of magnitude. However, carbon-based fillers can 
deteriorate the mechanical properties and increase the 
water uptake of polymer coatings [54]. The main problem 
associated with the use of carbon materials in industry is 
the difficulty of their dispersion in polymers and the need 
to endow polymer fibers and textiles with hydrophilicity 
needed for their processing [56]. Carbon fillers deteriorate 
the film transparency of films, which requires the use of 

Fig. 3. Structure resulting from the reaction of rGO and copper(II) sulfate [55]
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layer-by-layer assembly. For example, in order to main-
tain the film transparency [57], poly-L-lactide films were 
successively treated with two types of polyelectrolytes: 
positively charged chitosan or polyethyleneimine and 
negatively charged GO. This method allows deposition 
of multiple bilayers on the film.

Surfactants as antistatic additives

The surfactants applicable as antistatic additives in-
clude compounds containing hydrophilic groups and lipo-
philic hydrocarbon groups. This makes it easy to combine 
surfactants with epoxy resins [58], PVC [59], and textile 
fibers based on polyesters [60]. Cationic surfactants, that 
is, quaternary ammonium salts, are used most widely 
as antistatic agents, since they are readily soluble in ep-
oxy resins and are easily adsorbed on negatively charged 
polyester fibers without damaging them [61]. For ex-
ample, antistatic coatings based on epoxy resin (E-51), 
polyetheramine (hardener), and quaternary ammonium 
salts of poly(di-n-propylamine-co-epichlorohydrin) 
P(DPA-EPI) and poly(di-n-butylamine-co-epichloro-
hydrin) P(DBA-EDI). The coatings were deposited on 
a polypropylene substrate. The coatings retained their 
transparency when the surfactant was added. To achieve 
the antistatic effect, only 1 wt. % surfactant was required 
(Figure 4). As a result, the surface resistivity decreased 
by four orders of magnitude (from 1012 to 108 Ω/cm2). 
According to the authors, this was due to the adsorption 
of air moisture by the surfactant and the formation of 
a conductive hygroscopic layer by the polar hydroxyl and 
quaternary ammonium groups of the surfactant.

In addition, the surface resistivity of the coatings with 
P(DBA-EDI) decreased to a higher extent than that of 
the coatings containing P(DPA-EPI). Thus, the length 
of the hydrocarbon chain at the nitrogen atom affects the 
antistatic properties of epoxy coatings.

However, a drawback of surfactants is their migration 
to the surface of the polymer material over time, which 

leads to the loss of antistatic properties [62]. In addition, 
the hardness of epoxy coatings decreases upon the addi-
tion of surfactants, despite good adhesion [56]. Therefore, 
the interest in the use of surfactants in antistatic polymeric 
materials is declining.

Nanoparticles as antistatic additives

Nanoparticles of metals and metal oxides provide elec-
trically conductive structures for polymer coatings [63]; 
unlike carbon particles, they are easily dispersed in the 
polymer matrix [64], generating a long-term antistatic 
effect; unlike surfactants, they do not migrate to the sur-
face of the polymer material and are not leached [65, 66]; 
in addition, they improve the UV resistance of polymer 
fibers [64, 67–69].

Zhang. J. et al. [70] fabricated an antistatic coat-
ing based on polypropylene decorated with silver 
nanoparticles incorporated in the porous structure of 
coal gasification slag microbeads. Due to the small par-
ticle size, low density, and large specific surface area, 
silver nanoparticles were easily built into microbeads, 
and the filler was easily dispersed in the polypropylene 
matrix. Upon the addition of 10 wt. % of microbeads 
into the polypropylene matrix, the volume resistivity 
was 3.35•105 Ω•cm; this fits into the range required 
for antistatic properties. However, the filling deterio-
rated the mechanical properties of polypropylene. In 
particular, the mechanical strength of polypropylene 
decreased, which was explained by an increase in stress 
concentration at the polymer-filler interface. However, 
a shortcoming of this study is the lack of explanation 
why silver nanoparticles were used in microbeads rather 
than by themselves.

Nanoparticles of metal oxides, for example, 
aluminum(III) oxide, zinc(I) oxide, iron(III) oxide, 
and zirconium oxide (IV), are environmentally benign, 
chemically stable, and inexpensive antistatic additives for 
polymer coatings and fibers [63, 71, 72].

Fig. 4. Change in the surface resistivity of the epoxy coating with increasing surfactant content. 
RH is air humidity [58]
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The introduction of aluminum oxide nanoparticles 
(particle size of 20–40 nm) into polypropylene was shown 
to increase the electrical conductivity of polypropylene 
[73]. The modified polypropylene was meant for the use 
as an antistatic coating for tools and instrumental equip-
ment. It was reported that an increase in the nanopar-
ticle concentration from 1 to 5 wt. % led to a decrease in 
the surface resistivity of the modified samples. When the 
concentration of nanoparticles in the composite was low 
(below 5 wt. %), the modification resulted in increas-
ing tensile strength. However, when the concentration 
of nanoparticles in the polypropylene bulk was 30 wt. %, 
the mechanical and surface properties of polypropylene 
are deteriorated. Electron irradiation of modified poly-
propylene samples slightly increased the conductivity (on 
average, by 5–6%). The authors interpreted this fact by 
assuming that polypropylene chains break on exposure to 
radiation, resulting in an increase in the number of free 
radicals and unsaturated bonds and in the formation of 
conjugated double bonds.

The application of 6 wt. % zirconium dioxide 
nanoparticles with a size of 20–50 nm and a spherical 
shape in polyurethane coatings makes it possible to dis-
sipate the electrostatic charges and reduce the surface 
resistivity to 109 Ω/cm2. In addition, an advantage of zir-
conium dioxide nanoparticles over other nanoparticles is 
their ability to improve the adhesive strength of a polyure-
thane coating and form a rough structure on the coating 
surface, which prevents dust accumulation [74].

However, there are no data in the literature [63, 71–
74] on the mechanism of the antistatic action of metal 
oxide nanoparticles.

Despite the fact that metal and metal oxide nanopar-
ticles are better dispersed in the polymer matrix than car-
bon materials, higher concentrations of nanoparticles 
compared to the concentrations of carbon materials are 
required to attain the antistatic effect; this results in de-
terioration of mechanical properties. In addition, metal 
nanoparticles (copper, silver) are prone to oxidation, 
which necessitates their additional processing, in par-
ticular, alloying [75].

Ionic liquids as antistatic additives

Ionic liquids (ILs) are salts with high thermal stability 
and low combustibility [76]. They represent a promis-
ing alternative to nanosized powdered inorganic fillers of 
polymeric materials due to their environmental safety and 
the possibility of using renewable natural raw materials for 
their manufacture [77–83]. Ionic liquids can reduce the 
resistivity of polymer coatings in both wet and dry states. 
For example, Mudzakir A. et al. [84] tested an ionic liq-
uid, cis-oleylimidazolinium iodide, as an antistatic agent 
in ceramic and wooden floor coverings. The ionic liquid 
was mixed with polyurethane. The surface resistivity of 
the coating with IL (2–9 wt. %) was in the range from 
106 to 109 Ω/cm2, which allows slow and safe discharge 
of the electrical charge into the ground. According to the 
authors [84], the antistatic properties of IL were due to the 
electrical conductivity of iodide ions and to the ability to 
attract less dust. The resulting coating can be used in the 
construction industry for floor treatment and as a decorat-
ing element. A disadvantage of the reported coating and 
of the study as a whole is the yellow color of the resulting 

Fig. 5. Polymerized bis(trifluoromethanesulfonimide) [2-(methacryloyloxy)ethyl]
trimethylammonium [85]
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coating caused by the presence of iodide anion in IL, 
which precludes the use of this coating on white surfaces.

To eliminate this drawback, a iodine-free IL, that 
is, polymerized bis(trifluoromethanesulfonylimide) 
[2-(methacryloyloxy)ethyl]trimethylammonium was 
utilized as a filler for polyurethane films [85] (Figure 5).

Owing to the use of IL, it was possible to reduce the 
surface and volume resistivity of polyurethane by two to 
three orders of magnitude at a low filler concentration 
of only 1000 ppm (Table 1). The film retained transpar-
ency upon addition of IL. The authors interpreted the 
mechanism of the antistatic action of IL by assuming 
that IL dissociates in the polyurethane matrix and [Tf2N]- 
anions migrate along the fluctuations of polyurethane 
chains [84]. This IL was not washed away from the film in 
a methanol solution. However, a disadvantage of this IL is 
the fact that it is a solid, which complicates its dispersion 
in the polymer matrix.

The incorporation of ILs into poly(methyl methac-
rylate) and poly(butyl methacrylate) films and polyurea-
based coatings made it possible to reduce their resistivity 
without loss of transparency [86–88]. Lower-viscosity ILs 
containing shorter alkyl chains have better antistatic prop-
erties [86, 88]. This is explained by the fact that an elonga-

tion of the IL alkyl chain leads to an increase in the van der 
Waals forces and a decrease in the ion mobility [89–91]. 
However, ILs based on imidazolium and ammonium cat-
ions are better compatible with the acrylate matrix than 
phosphonium cations, which is due to their better solubility 
[86]. Therefore, the compatibility of ILs with polymers is 
greatly affected by the hydrophobicity of the cations.

Ionic liquid anions also affect the conductivity. Tsuru-
maki A. et al. [86] compared the volume and surface resis-
tivity of poly(butyl methacrylate) films (Blank) containing 
ionic liquids based on imidazolium cations [C4mim]+ and 
[BF4]–, [CF2SO3]–, [PF6]–, [FSI]–, and [Tf2N]– anions. 
The most pronounced decrease in the surface resistivity 
was attained for the IL with the [BF4]– anion, while the 
smallest decrease was observed for the IL with the [Tf2N]– 
anion (Figure 6). The authors attributed the decrease in 
the resistivity to the plasticizing effect of IL and to the 
formation of a continuous conductive path in the polymer 
matrix. However, the influence of the type of anion on the 
resistivity was left without a proper explanation, which is 
a significant shortcoming of the work.

The addition of low-viscosity IL in low concentrations 
to polymer materials makes it possible to obtain antistatic 
polymer films and coatings. In particular, to reduce the 
resistivity of polyurea by five orders of magnitude, it is 
sufficient to introduce 2 wt. % potassium hexafluoro-
phosphate [11, 87]. At the same time, the transparency 
of the coatings is preserved, unlike that upon the addi-
tion of carbon fillers. However, ionic liquids are more 
expensive antistatic additives than graphene, aluminum 
and copper powder. For example, the price of potassium 
hexafluorophosphate IL is 46 euro per kg; meanwhile, 
carbon black costs approximately $1000 per ton. It is also 
possible that the mechanical properties of coatings based 
on polyurea can be deteriorated upon the addition of IL, 
in particular, the tensile strength may decrease due to IL 
migration to the surface [87].

Table 1
Specific surface RS and volumetric RV electrical 
resistances of polyurethane films containing IL

IL content, ppm RS, Ω•cm–2 RV, Ω•cm

0 2.1•1012 5.1•109

10 3•1011 9•109

100 6•1010 9.8•108

1000 4.7•109 5•107

Fig. 6. RV (orange) and RS (blue) of poly(butyl methacrylate) films containing 10 wt. % IL [86]
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Conductive polymers as antistatic additives

Conductive polymers, mainly polyaniline, are inex-
pensive and readily available alternatives to ILs. Conduc-
tive polyaniline was dispersed in methylpyrrolidone and 
added to polyurethane-acrylate latexes [92]. Polyaniline 
was added to improve the electrical insulation of damping 
coatings used in railway trains. As the content of polyani-
line increased, the resistivity of the films decreased, while 
the electrical conductivity increased. When the content 
of polyaniline was 10 wt. %, the volume resistivity was 
3.19•105 Ω•cm, and the best antistatic characteristics of 
the films were observed at a polyaniline dispersion content 
of 45 wt. %.

An advantage of polyaniline over nanoparticles is its 
controlled electrical conductivity due to the possibility 
of doping [93]. In particular, polyaniline was doped [93] 
with an acrylic ester grafting epoxy resin (A-g-EP) with 
carboxyl functional groups, which, in the opinion of the 
authors, provided conductive bridges between the poly-
aniline domains. As a result, the surface resistivity of the 
coatings decreased by 6 orders of magnitude compared to 
A-g-EP (from 1.6•1011 Ω/cm2 to 2.4•105 Ω/cm2). Gao X. 
et al. [94] showed that the addition of 3 wt. % polyaniline 
doped with dodecylbenzenesulfonic acid to polyurethane 
increases the electrical conductivity of the polyurethane 
film. The disadvantage of the works [92, 93] is the lack 
of data on the effect of polyaniline on the mechanical 
properties of polymer composites.

However, a disadvantage of polyaniline is the difficulty 
of its dispersion in the polymer matrix due to its aggrega-
tion, which this deteriorates the conductivity and compli-
cates the formation of a conductive network in the coat-
ing; the lack of solubility in most organic solvents [95]; 
the need to use high concentrations to attain an antistatic 
effect (20 wt. % polyaniline was added to natural rubber 
in [96]); and lower electrical conductivity compared to 
titanium dioxide nanoparticles [97].

A high content of polyaniline in the matrix can lead 
to poor mechanical stability of the final product. To 
avoid deterioration of mechanical properties, polyaniline 
is mixed with nanoparticles [98]. Mirmohseni A. et al. 

[98] inserted a nanohybrid of polyaniline, copper, and 
zinc oxide into the water base of a polyurethane dis-
persion. The resulting polyurethane coating had an in-
creased adhesive strength to steel and scratch resistance 
compared to a coating without nanoparticles. The au-
thors explained this fact by charged hydrophilic surface 
of the coating. Furthermore, the addition of the nano-
hybrid provides a better antistatic effect of polyurethane 
compared to single additives. The developed nanohybrid 
polyurethane coating is in demand in modern industrial 
construction for dedusting of soft steel and in hospital 
operating rooms.

CONCLUSION

Carbon nanotubes are promising antistatic additives 
to polymer coatings based on polyvinyl chloride for the 
manufacture of decorative finishing materials in con-
struction and to composites based on polyoxymethylene 
intended for fixing devices for electronic equipment and 
gadgets (mobile phones, displays). However, further re-
search is needed to improve the mechanical and adhesive 
properties of filled polymeric materials.

Graphene oxide nanosheets can only be used as addi-
tives in water-based polyurethane coatings as synergistic 
mixtures with metal nanoparticles or conductive poly-
mers. The coatings can be used in civil engineering as 
decorative elements.

Metals and metal oxide nanoparticles, due to their 
good dispersibility in the polymer matrix, can be used as 
additives to polypropylene and polyurethane industrial 
coatings for devices and equipment.

Ionic liquids are promising additives in polyurethane 
coatings and polyacrylate films that can be used in civil 
and industrial construction and in electronics.

Surfactants are washed away from polymer coatings, 
and, therefore, they are not of interest to researchers.

Polyaniline is of interest as a cheap additive to water-
based polyurethane coatings for the use in health care 
institutions (wall and floor coatings in hospitals, dental 
offices, etc.) only in combination with metal and metal 
oxide nanoparticles.
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